Mediaportal Report

16/03/2012

ABC 666 Canberra (Canberra)
Drive - 16/03/2012 3:22 PM
Louise Maher

Interview with Professor Ove Hoegh-Guldberg from the University of Qld Global Change Institute about the Catlin Seaview Survey which is a joint venture between Google, Underwater Earth an insurance company, and Qld University to do things like map and show the Great Barrier Reef. Hoegh-Guldberg explains the initiative to create something similar to Street View on Google Earth. Hoegh-Guldberg discusses what scientists get out of the initiative such as examining the health of the Great Barrier Reef which can help with the projects going on at the Australian Institute of Marine Sciences and the Great Barrier Reef Marine Park Authority.

Interviewees: Professor Ove Hoegh-Guldberg, University of Qld Global Change Institute
Duration: 8.46
Summary ID: W00047917159
© Media Monitors

09/03/2012

ABC Tropical North (Mackay)
Mornings - 9/03/2012 8:47 AM
Kim Kleidon

UNESCO officials will visit the Great Barrier Reef to survey it's management and health. Ove Hoegh-Guldberg, Director, Global Change Institute, University of Queensland explains that the reef has World Heritage status and therefore must be protected by governments. The reef provides $6 billion a year through tourism and is an asset for the world, he asserts. Abbot Point and Hay Point developments will affect the reef and he laments that tree removal and run-off have 'killed some coral'. Resources may not always be as profitable and may not 'trump' the reef. He expects UNESCO to raise concerns but not to withdraw the heritage listing.

Interviewees: Ove Hoegh-Guldberg, Director, Global Change Institute, University of Queensland
Duration: 7.45
Summary ID: W00047817231
© Media Monitors
03/03/2012

No headline
Weekend Gold Coast Bulletin, 03/03/12, Paradise, Page 23
By: None

02/03/2012

Australian ocean icon to get Google ‘Reef View’
AFP Newswires, 02/03/12, General News, Page 1
By: AFP
Hutchison says a new marine research project is trying to offer people a virtual version of parts of the Great Barrier Reef. Google and the University of Qld have teamed up for the project. Prof Ove Hoegh-Guldberg, Global Change Institute, University of Qld, says a submersible will be fitted with cameras similar to Google’s street view cars, and Google software will be used to create a virtual map. He says several kilometres of the reef will be photographed, and the project will be used to compare the effects of climate change in the future. He says about 20 sites on the reef will be available eventually. He says deep water areas will be explored with robots, and marine life, like tiger sharks will be tagged with GPS equipment.

Interviewees: Prof Ove Hoegh-Guldberg, Global Change Institute, University of Qld
Duration: 7.06
Summary ID: W00047708432
This program or part thereof is syndicated to the following 5 station(s):- ABC Goldfields/Esperance (Esperance), ABC Great Southern WA (Wagin), ABC Kimberley (Broome), ABC North West WA (Karratha), ABC South West WA (Bunbury)
© Media Monitors

Dive on reef from your loungeroom
Kalgoorlie Miner, 25/02/12, General News, Page 37
By: Jennifer Ennion

Mile, you’re on coral camera Innovative project will allow you to dive the Barrier Reef from the comfort of your lounge
Sunshine Coast Daily, 25/02/12, General News, Page 43
By: None

© Media Monitors
artworld
marina saint martin
Well-known indigenous artist Judy Watson spent days walking on Heron Island and found concerning signs of human and climate change impact – which she has translated into art

charting an uncertain future

In 2009, Judy Watson was named the first artist-in-residence at the University of Queensland’s Heron Island Research Station. Watson is an indigenous artist whose matrilineal family hails from northwest Queensland. She is regarded as one of Australia’s leading contemporary artists and her work is held in major Australian and international collections, including the National Gallery of Australia and all state art galleries.

The island residency allowed her to view and explore this famous Great Barrier Reef island, affording the opportunity to involve herself physically in the area. It was a period of study and reflection ideally suited to Watson’s art process of intense observation.

Heron Island Research Station is a world-class research and teaching facility. As the most prestigious marine research station in Australia, it is internationally renowned for its coral reef research and training in marine sciences.

Watson was allowed a free hand for her artistic response and the result is a suite of etchings now on display at the Gold Coast City Gallery.

Judy Watson’s Heron Island Suite clearly focuses on the artist’s deeply felt response to the many hours she spent walking and exploring the island, as well as her concerns for the area’s future.

While there, Watson discovered a number of worrying signs of both the impact of human activity on the island’s landscape and global warming on the Great Barrier Reef.

In the past, Watson’s art explored territory including the plight of dispossessed indigenous Australians. On Heron Island, no records of indigenous occupation exist.

There is, however, growing awareness of the effect of global warming and its potential impact in the future. Such awareness granted urgency and purpose to Watson’s art.

On her daily walks, Watson collected material for visual research. This included coral, seaweed, feathers, various forms of vegetation and sea pods. The careful drawings she made from this material have provided the basis for her colourful etchings, all of which convey a powerful ecological message.

In her Heron Island collection, Watson combines her observations, an intuitive understanding of the land and its need to regenerate itself, and an awareness of the role of modern scientific knowledge.

Her time on the island coincided with the reopening of the research station, which burnt down in 2007. At the official reopening, she heard
a number of scientists express concerns about the future of the Great Barrier Reef. In particular they were worried about ocean acidification and coral bleaching.

Watson has allowed elements of the environment and cultural history to flow into her art. She perceived the importance of the scientists' comments and immediately considered including their message in her work.

Watson also sought permission from a number of the scientists then based at the station including Professor Ove Hoegh-Guldberg, Dr Bradley Congdon and Dr Kathy Townsend to include some of their carefully prepared statistical graphs within her artwork. They all agreed.

On her return to Brisbane, trained printmaker Watson reworked her drawings of coral, shell, leaves, feathers and beach detritus as a series of etchings first shown at the UQ Art Museum in late 2009.

She later altered a number of plates in the series, overlaying the prints with research charts developed by the Heron Island scientists.

These scientific graphs examine how ocean acidification, changes to sea surface temperature, the effect of the El Nino climate pattern and global warming are all impacting relentlessly on coral bleaching and the breeding success of several species of seabirds.

While Watson's work has previously focused considerably on her own cultural heritage, this new series – which is also Watson's first major suite of etchings – is less a tribute to the past and more a serious warning for the future.

Judy Watson's Heron Island Suite, Foyer Gallery, Gold Coast City Gallery, Bundall Rd, Surfers Paradise, until March 25.
Australian ocean icon to get Google 'Reef View'

Sydney, March 2, 2012 (AFP) - Australian scientists mapping the Great Barrier Reef will broadcast their findings in partnership with Google, modelled on its "Street View" to spotlight the impact of climate change. The University of Queensland's Seaview Survey, funded by global insurance giant Catlin, will use custom-designed cameras and diving robots to plumb never-before-seen depths of the reef off Australia's northeast coast. It is a scientific expedition with an everyman twist, according to chief scientist for the project, Ove Hoegh-Guldberg.

A special four-lensed camera, which can be held by a scuba diver swimming through and over the corals, will capture a "rapid visual census" of life forms at 20 sites along the entire 2,300-kilometre (1,430-mile) length of the reef. An estimated 50,000 panoramas, shot in 360-degree high-definition, will then be uploaded to Google's Panoramio photo site for use on Google Maps and Google Earth -- a kind of "Street View" under the ocean.

"By using some really nifty digital technology to create 360-degree imagery we're essentially able to allow people to slip into the Great Barrier Reef and go for a dive as if they were coming with us," Hoegh-Guldberg told AFP.

The expedition, which will officially depart in September, will also have a dedicated YouTube channel documenting its progress in real-time. Hoegh-Guldberg said its primary focus would be recording the reef for later comparisons to measure the effects of climate change, as well as mapping depths unreachable by scuba divers, about which very little is known.

In particular, he said the project team was interested in how deep reefs -- between 30 and 100 metres (98-330 feet) below sea level -- were triggered to spawn, or reproduce. Shallow reef spawning was triggered by the moon and it would be a "phenomenal discovery" if deep reefs were also found to follow the moonlight, which would likely be very dim at such depths, he added.

Another team, led by Emmy award-winning cinematographer and shark researcher Richard Fitzpatrick, will track the reef's "charismatic megafauna" such as rays, turtles and tiger-sharks, and migratory changes due to ocean warming.

A six-day trial of some of the robots in a deep-reef environment at the end of
last year had already revealed four new coral species for Australian records and a new breed of pygmy seahorse.

Hoegh-Guldberg said the project was an exciting combination of "real science" and popular culture, adding that he hoped it would increase public awareness of the oceans and their vulnerability to climate change. "Oceans are undergoing major change, be that our polar seas, our kelp forests, our coral reefs and so on," he said.

The Great Barrier Reef was just the first part in what was intended to be a global project, mapping the world's coral reefs. "After all it's 71 percent of the Earth's surface, it's the major habitat on the planet, we really are terrestrial organisms on a watery planet," said Hoegh-Guldberg.

Bringing people from all over the globe a first-hand experience of the reef via Google and YouTube would hopefully jog their conscience about the issue, Hoegh-Guldberg added. "It's really important that we develop a methodology where we can bring the Earth's citizens down into the oceans so that they really do understand what's at stake and understand both the challenges and the solutions," he said.

ajc/mp/emb
Dive on reef from your loungeroom

FROM the comfort of lounge rooms around the world, millions of people will be able to dive on the Great Barrier Reef thanks to a ground-breaking expedition.

The Catlin Seaview Survey, launched in Singapore on Thursday, will see about 50,000 panoramic images of the reef uploaded to Google Earth and Google Maps. When these images are merged together people will be able to choose a location and go for a virtual dive.

The major scientific study will also have a YouTube channel and include Google Hangouts video technology, allowing people to watch expedition dives broadcast live from the ocean floor.

Australian Professor Ove Hoegh-Guldberg, the chief scientist on the project, says it is the first of its kind.

“It’s ground-breaking in that it’s going to be using shallow-water specially-designed cameras to take 360-degree panoramic shots of the reef,” he told AAP from Singapore.

“It’s going to do that over kilometres of seascapes at each of the multiple sites down on the Great Barrier Reef.”

State-of-the-art technology, such as dive robots with claws, will be used to document the composition and health of target coral reefs at depths reaching 100 metres.

The robots, which will be controlled at the surface, will collect data including corals. They will also help with carrying out surveys and taking measurements and photographs.

“The survey is stepping up to the idea that we need to increase our observations on places like the Great Barrier Reef as the climate changes,” says Prof Hoegh-Guldberg, director of the Global Change Institute of Science at The University of Queensland.

He says the survey takes in areas of the reef which are little studied, using technology to get a snapshot of what conditions are like today. The compiled data will then be used by scientists in the future to trace changes occurring over time due to ocean warming and acidification.

The project will span two years, with the dive expedition launching on the reef in September.

It will also be split into three surveys - shallow reef, deep water, and mega fauna.

The shallow-reef survey focuses on obtaining images of the reef to create a census of life at 20 sites. This will provide what is known as the baseline for understanding climate change on coral reefs.

The deep-water survey involves the robots and will explore the reef at depths between 30 to 100m. It will collect information on the health, composition and biodiversity of deep-water reefs.

The third survey on mega fauna is being led by Emmy award-winning cinematographer and shark researcher Richard Fitzpatrick. With the use of satellite tags, his team will study the migratory patterns of tiger sharks, green turtles and manta rays in response to rising seawater temperatures.

Prof Hoegh-Guldberg, 52, says during a six-day pilot of the project the expedition team found four new species of corals for Queensland and completely new species of pygmy seahorse - just a taste of discoveries to come.

Between now and the September reef launch, the team will focus on fitting out the dive robots and further developing the deep-sea technology so it can withstand the changes in pressure underwater.

When the work on the reef begins, scientists will base themselves at sea for 10 to 14-day expeditions over a three- to four-month period.

At the conclusion of the two years, it’s hoped the project will be rolled out to other reefs across the planet so we can all learn more about the effects of climate change on ocean ecosystems.

Prof Hoegh-Guldberg says although the public might think there is debate over the existence of climate change, 99 per cent of all scientists who work in the contentious area now believe it is very serious.

“What we’ve seen since the early 1980s on the Great Barrier Reef are things called mass coral bleaching events,” he says.

“This is where hundreds of square kilometres of reef essentially get sick because they get too warm.”

Australia is yet to experience the high temperatures that occurred in the Caribbean in 2005 and the western Indian Ocean in 1998, he says, but our future looks grim. “In terms of the Great Barrier Reef, we are facing some serious problems, especially in the future.”

JENNIFER ENNION
Panoramic view: Heaven Island, on the Great Barrier Reef-offshore from Gladstone.

Coral colour: Exploring the Great Barrief Reef

“I’m hoping there’ll be a general sense of excitement because this project is about the next generation of technology.”

— PROFESSOR OVE HOEGH-GULDBERG

Right: Fish swimming in the reef.
Smile, you’re on coral camera

Innovative project will allow you to dive the Barrier Reef from the comfort of your lounge

FROM the comfort of lounge rooms around the world, millions of people will be able to dive on the Great Barrier Reef thanks to a ground-breaking expedition.

The Catlin Seaview Survey, launched in Singapore on Thursday, will see about 50,000 panoramic images of the reef uploaded to Google Earth and Google Maps. When these images are merged together people will be able to choose a location and go for a virtual dive.

The major scientific study will also have a YouTube channel and include Google Hangouts video technology, allowing people to watch expedition dives broadcast live from the ocean floor.

Australian Professor Ove Hoegh-Guldberg, the chief scientist on the project, says it is the first of its kind.

“It’s ground-breaking in that it’s going to be using shallow-water, specially-designed cameras to take 360-degree panoramic shots of the reef,” he said.

“It’s going to do that over kilometres of seascape at each of the multiple sites down on the Great Barrier Reef.” State-of-the-art technology, such as dive robots with claws, will be used to document the health of target coral reefs at depths reaching 100m.

The robots, which will be controlled at the surface, will collect data including corals. They will also help with carrying out surveys, and taking measurements and photographs.

“The survey is stepping up to the idea that we need to increase our observations on places like the Great Barrier Reef as the climate changes,” says Prof. Hoegh-Guldberg, director of the Global Change Institute of Science at The University of Queensland.

He says the survey takes in areas of the reef which are little studied, using technology to get a snapshot of what conditions are like today. The compiled data will then be used by scientists in the future to trace changes occurring over time due to ocean warming and acidification.

The project will span two years, with the dive expedition launching on the reef in September. It will also be split into three surveys – shallow reef, deep water and mega fauna.

The shallow-water survey focuses on obtaining images of the reef to create a census of life at 20 sites. This will provide what is known as the baseline for understanding climate change on coral reefs.

The deep-water survey involves the robots and will explore the reef at depths between 30-100m. It will collect information on the health, composition and biodiversity of deep-water reefs.

The third survey on mega fauna is being led by Emmy award-winning cinematographer and shark researcher Richard Fitzpatrick.

With the use of satellite tags, his team will study the migratory patterns of tiger sharks, green turtles and manta rays in response to rising seawater temperatures.

Prof. Hoegh-Guldberg says during a six-day pilot of the project the expedition team found four new species of corals for Queensland and completely new species of pygmy seahorse – just a taste of discoveries to come.

– AAP

Findings from the Catlin Seaview Survey will be available at www.catlinsseaviewsurvey.com and on the Google platforms.
Professor’s call to action

AUSTRALIA is yet to experience the high temperatures that occurred in the Caribbean in 2005 and the western Indian Ocean in 1998, Professor Ove Hoegh-Guldberg says, but our future looks grim.

"In terms of the Great Barrier Reef, we are facing some serious problems, especially in the future."

This is why it is so important the public gets on board with this survey, he says.

"It is a global project. We’re talking about the oceans, that is the thing that links us all together and I think the very fact that you can come on expeditions, talk to scientists, go to (places like) the Maldives and dive, I think this is going to grab people’s imaginations."

SINK OR SWIM: “What we’ve seen since the early 1980s on the Great Barrier Reef are things called mass coral bleaching events,” says Professor Ove Hoegh-Guldberg who is leading the Barrier Reef project. “This is where hundreds of square kilometres of reef essentially get sick because they get too warm.”

PHOTO: CONTRIBUTED